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INTRODUCTION TO IMPACT LOADING 

Christopher Wright P.E. 

COURSE CONTENT 
 

INTRODUCTION 
 
At one time or another most engineers run into cases of impact loading. The general 
problem of impact is extremely complex. A common case of impact—vehicle collision 
with a traffic barrier—involves large displacements, material non-linearity, elastic and 
plastic instability, post-buckling strength, coulomb friction and material behavior under 
high strain rates. Finite element methods can provide an ‘exact’ solution (in the sense 
that the modeling assumptions can be tweaked to produce a recognizable match to test 
results), but reasonable and useful engineering estimates are possible simply from 
considerations of a few first principles with some simplifying assumptions. The 
following discussion will illustrate the usual approaches with a discussion of the 
underlying physics and some examples.  

 

THE ENGINEERING PROBLEM  
 
The physics of impact necessarily involves conservation of energy and momentum. 
When a moving object strikes a structure the force which decelerates the mass satisfies 
conservation of momentum. The kinetic energy of the impacting body will be partially 
converted to strain energy in the target and partly dissipated through friction and local 
plastic deformation and strain energy  ‘radiated’ away as stress waves. The details are 
very difficult to predict, but some simple estimates based on first principles can usually 
result is reasonable estimates for response.   

The chief problem usually involves estimation of deformability. The assumption of a 
rigid impact is generally useless, since rigidity implies an instantaneous velocity 
change, therefore infinite acceleration and an infinite force.  In real structures the 
deceleration is limited by elastic and plastic deformation, which in effect cushions the 
blow, and a major ‘trick’ is making a reasonable estimate the local compliance or 
stiffness at the point of impact. 

Where impact is a routine service condition, the structure should remain elastic or 
nearly so and a true dynamic analysis may be required. In many structural or 
mechanical design problems the requirement is to provide proof that the structure 
remain substantially intact, even though damaged. Local plastic deformation may be 
tolerated, provided the overall response is nearly elastic. The St Venant effect allows the 
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local effects to be considered separately as a first approximation. Approaches based on 
energy equivalence are useful in both elastic and plastic behavior. 

 

Mass and Weight 
 
The difference between mass and weight has been cleverly obscured by generations of 
academics, textbooks and engineers who don’t know better. Many engineers use the 
terms interchangeably or at best carelessly, which will emphatically not be the case 
herein. As a working definition, the mass of an object shall mean the quantity of matter 
making up the object. The mass does not change with location, speed or much else. The 
weight of an object is the force exerted by gravity acting on the object’s mass. Because 
the mass of an object is usually found by comparing its weight to the weight of a 
standard, like the International kilogram, force will be considered a basic unit and mass 
a derived unit according to Newton’s second law of motion. (This is an arbitrary 
choice—ISO measures consider force as the derived unit). Basic units of the example 
problems are length – inches; force – pounds; time – seconds and mass (= 
force/acceleration) – lb-sec2/in. Accordingly an object with a mass of 30 lb-sec2/in has 
a weight of F=mg = (30 lb-sec2/in)(386.09 in/sec2) = 11582.7 lb. Note how the units 
cancel because Newton’s laws are dimensionally consistent as written–no need for silly 
artifices like the so-called gc constant and the use of pounds to refer to both mass and 
force. Regrettably there is no separate set of examples in ISO units—maybe next time. 
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ELASTIC RESPONSE 

The simplest and most conservative model is to assume that the structure remains 
perfectly elastic and that the incoming kinetic energy be completely converted to strain 
energy of deformation within the target structure. The figure shows a simple elastic 
body, typically a spring with spring rate, k, struck by a mass, m, having a weight, W, 
moving with a velocity, V. 

 The impact force, F, carried by the spring and its equal and 
opposite reaction act to slow the mass and compress the spring a 
maximum distance ymax. The calculation simply equates the work 
done on the spring to the incoming kinetic energy.  

Mass kinetic energy— 

Ek = 
1
2  mV2 =  

1
2

W
g  V2

W

K

y, V

Spring energy of deformation— 

Ep = ⌡⌠
0

y
 Fdu  = ⌡⌠

0

ymax
 kudu  =  

1
2  kymax2

Equating the kinetic energy to the spring energy, Ek = Ep 

  
1
2  kymax2 =  

1
2

W
g   V2 or the equivalent  ymax = V

W
kg  =

2Ek
k

Since the spring force, Fmax = kymax 

 Fmax =  V
kW
g    = 2kEk

Although a spring was used to illustrate the process, the actual elastic body could be 
anything for which the deformation can be estimated. This approach is conservative 
because it ignores damping, friction and any inelastic deformation or other energy 
absorption mechanisms. The approach produces reasonable results  for assessing such 
items as bumpers where impact is a service condition and damage is to be prevented 
and not simply tolerated.  

DROPPED MASS 

Page 3 of 11 



www.PDHcenter.com PDH Course S164
www.PDHonline.org

The energy balance approach is easy to extend to impact on a beam by a dropped mass. 
In this case the energy to be absorbed is the incoming kinetic energy plus the additional 
work done by the weight, W, acting through the beam deformation 

Energy to be absorbed — 

 Ek + Wymax = 
1
2

W
g  V2 +Wymax 

Equating energy absorbed and the work of elastic 
deformation— 

 Ek + Wymax = 
1
2  kymax2

or  

 ymax = 
W
k  

⎝
⎜
⎛

⎠
⎟
⎞

1 + 1 + 
2kEk
W2   = yst⎝

⎜
⎛

⎠
⎟
⎞

1 + 1 + 
2Ek

Wyst

F

W,V

L

where yst is the static deflection of the beam under the weight, W.  The quantity in 
parentheses is the dynamic amplification–the factor by which a load is amplified when 
suddenly imposed. Since the displacement and load are proportional the effective force 
carried by the beam during impact is the product of the dynamic amplification and the 
weight, W. Note that the dynamic amplification for V = 0 (Ek = 0 ) = 2: a load suddenly 
applied from rest produces twice the stress and twice the displacement as the same load 
gradually applied.   

Remember the assumptions  

The beam stiffness is the same for static and dynamic loading.  

The beam mass is ignored.  

Deformation occurs without energy loss, so in theory the mass rebounds forever. 
Energy exchanges between kinetic energy of the mass and strain energy of the 
beam. As you might expect, this assumption is conservative, but it’s frequently 
sufficient to demonstrate impact resistance.  
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INELASTIC RESPONSE 

In elastic collisions no energy is lost and none goes into yielding or frictional resistance. 
In practice, designs rugged enough to withstand large collisions elastically are 
impracticably heavy. Plastic deformation is an excellent and economical means to 
cushion against impact (as automakers have shown) and the economics often dictates 
that repair of a structure subject to infrequent damage may be cheaper than producing 
and using a structure that responds elastically. 

In the elastic idealization the deformation behavior was linear–the force needed to 
deform the spring or deflect the beam was proportional to the displacement. In practice 
the force variation is linear only up to the onset of  yielding or crushing , which occurs 
without further increase in resistance. The limiting load may be taken as the load at the 
onset of yielding or buckling for axially loaded members or the load required to 
produce plastification of a beam section found according to limit analysis.  

The diagram shows idealized elastic plastic behavior in a general way. The shaded area 
represents the energy absorbed by a structural element undergoing yielding. The 
displacement increases linearly up to the limit load, Fu after which the structure 
deforms without additional force. The energy integral is simply the area under the 
curve  

Ep = ⌡⌠
0

y
 Fdu  = Fuymax - 

Fu2

2k

Equating the kinetic energy of impact and the strain energy gives the structural 

deformation, ymax  = 
Ek + 

Fu2

2k
Fu

  .

The displacement, ymax , is limited in practice by the ability of the structure to absorb 
plastic deformation without becoming unstable. The ratio of the total deformation to the 
elastic deformation is conventionally called the ‘ductility factor,’ µ. The ductility factor 
relates the elastic capacity of a structure and the impact load in a useful way, using a 
simple energy balance. Suppose a structure is subject to an external load, F. Equating 

the work done by the impact force, Fymax, to the 
energy absorbed by the structure as shown in the 
loading diagram provides the following energy 
balance  K

F

ymax

F = Fu

yu =
 Fu
  k

elastic behavior, F= Ky

u

Fymax = 
1
2 Fuyu +Fu(ymax – yu) or 

Fu
F   = 

2µ
2µ-1  

Where µ = the ductility factor,  
ymax

yu
 .
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The relationship expresses the required capacity of the structure for elastic deformation, 
Fu, as a fraction of the anticipated load and the degree of damage to be tolerated.  As a 
very general rule, ductility factors exceeding 10 are associated with very heavy damage. 
A ductility factor below 5 produces tolerable damage and will probably allow the 
structure to continue in use during repair.  

IMPULSE AND MOMENTUM 

The foregoing makes no explicit reference to Newton’s principle of impulse and 
momentum which also applies. By assumption all the kinetic energy work goes into the 
static displacement of the spring or beam, and what happens to the impacting mass is 

ignored. Looking at Newton’s Law, F = ma = m
dv
dt   or Fdt = mdv or by integrating both

sides⌡⌠
∆t

 Fdt  = m ⌡⌠
∆V

 dv  =  m∆V. 

In words impacting objects experience a variable force acting over the time that the two 
bodies are in contact. The time integral of this force, called the impulse, equals the mass 
times the change in velocity.  It doesn’t matter if the behavior is elastic or inelastic, so 
the impulse-momentum relationship is widely applicable.  

Although the impact force varies with time, an average or effective force Feff can be 
assumed which acts over the impact duration, ∆t,  such that Feff∆t =  ⌡⌠

∆t
 Fdt .  Using 

physical reasoning to estimate the interval, ∆t, then Feff = 
m∆V
∆t   will provide a

reasonable estimate of the impact force.  

Many impacts are completely inelastic—the impacting object is simply swept along by a 
moving target without rebounding, with impacting object or possibly the target being 
totally or partly crushed. An insect striking an automobile windshield is a common 
example, but a more important case is a bird strike on an aircraft. In such a case where 
the impacting object is easily deformable, the forces of deformation will be small with 
respect to the inertia and the impacting object simply ‘squashes.’ The impact duration is 
taken as the time between first contact and the time required for the remainder of the 
body (gruesomely called the ‘bird wedge’ in analyses of bird-strike), assumed to 
continue traveling at the speed of impact, to make contact. Mathematically, duration, ∆t, 
≈ length/impact speed. 

Conversely, knowledge of the crushing strength of the target can provide an estimate of 
the impact duration, using momentum considerations, which in turn can be used with 
the impact velocity to provide a measure of  the penetration distance into such target 
materials as foamed plastic or wallboard since penetration distance ≈ speed x duration.  
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It’s always good practice to make a sanity check of the assumptions and results:   

Impacting mass 
A soft object may stick or splatter, so not all of the mass decelerates as assumed. 
An oblique impact may not stop the impacting object completely, so ∆V may not 
equal the speed just prior to impact 

Object geometry 
The object may be spinning or tumbling so the length used to figure ‘squash-up 
time’ may need adjusting for reasonableness or worst case assumption. 

Crushing force magnitude 
 Some estimate of the crushing force should be made to verify that inertia forces 
dominate the impact. As shown below, a shorter impact may be less severe in a 
structurally soft target than a longer impact. Consider the response of the target 
to the calculated force to check the severity of the impact. 

  Impact duration 
 A solid object will stop more quickly than a soft one. The corresponding 
duration will be smaller and the force larger. The duration estimate for ‘squash-
up’ is more a measure of the time scale of the event and more likely to be an 
upper bound.  

As noted previously, impact forces can rarely be calculated with great accuracy, so any 
need for refinement or testing is a matter for engineering judgment.  

SHOCK RESPONSE 

This section will introduce transient force analysis 
using classical dynamics. The presentation involves 
some mathematics, but only the minimum needed 
to handle a few first principles. Rather than discuss 
a complete solution for transient displacement, the 
primary consideration will be the dynamic 
amplification, starting out by considering how the 

dynamic amplification develops. 

m

k

C

x

F(t)

The basic elements of a dynamic system are mass, viscous damping and stiffness, 
idealized as a particle with mass, m, a linear spring with spring rate, k, and a dashpot 
with the damping coefficient C. The figure shows how damping is included but for 
most of this discussion, damping will be ignored. Summing forces on the mass provides 
the following: 
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∑Fx = F(t) - kx - Cv = ma  or m
d2x
dt2

  + C
dx
dt  + kx = F(t) 

The negative signs for the spring and damper forces follow because as shown, the 
spring and damper both oppose positive displacement. A little algebra to divide 
through by the mass, m, makes the system handier for engineering use— 

d2x
dt2

  + 2ζω
dx
dt  + ω2x = 

F(t)
m   = 

ω2F(t)
k   

The symbols ω = 
k
m   and ζ = 

C
2 km  are the natural frequency (in units of rad/sec = 

2π Hz since 2π radians equals one cycle) and critical damping ratio. The natural 
frequency determines the system stiffness–high frequency systems are considered ‘stiff’ 
irrespective of the individual values for k and m. The critical damping ratio defines 
whether the system is oscillatory. For most structures and machine elements the 
damping ratio is less than 10% (ζ < 0.1) so they vibrate  following a shock. On the other 
hand automobile suspensions (properly maintained) are highly damped so that striking 
a pothole does not produce oscillation and the critical damping ratio exceeds 1. Note 

also that 
F(t)
k    is formally the static deflection and used as the basis for the dynamic 

amplification.  

Forces resulting from base acceleration, xg(t), rather than 
applied forces are an important variation in terms of 
approach. In the case of base motion the development is a 
little different because the second law of motion requires 
acceleration to be taken with respect to a non-accelerating 
reference frame. Taking u as the relative displacement  of 
the mass, m, xg(t) as the base displacement, so the absolute 

displacement, x(t) = xg(t) + u(t). Note that the spring and damper forces depend on the 
difference between the absolute displacement of the mass, x, and the base movement xg. 

m

k

C

xg(t) u(t)

 

m
d2(xg + u)

dt2
  + C

d(xg + u – xg)
dt   + k(xg +u – xg) = m

d2u
dt2

  + m
d2xg
dt2   + C

du
dt   + ku = 0 

or m
d2u
dt2

  + C
du
dt   + ku = –m

d2xg
dt2    = –mag 

and 
d2u
dt2

  + 2ζω
du
dt   + ω2u = –ag 
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The rephrased relationship in terms of  relative motion is then simply the same as that 
for a time varying force, with the force F(t) taken as the negative of the product of the 
mass and the base acceleration.  

SUDDENLY APPLIED FORCE 
 
A minimum of algebra was promised so the solution for the differential equation for a 
constant force, suddenly applied, called a stepped load, appears without intervening 
arithmetic. In fact the solution is easy as shown in all the references, and skeptics may 
verify that the solution uniquely satisfies the differential equation.  The displacement 
without considering damping is 

 x = 
F
k (1-cosωt)  x(0) = 

dx
dt (0)  = 0 

The maximum value of the spring force, kx, is 2F, so the dynamic amplification for a 
force suddenly applied is 2. The step load is the worst case for shock response except 
where external kinetic energy needs to be dissipated, such as for a falling mass. 
Consequently, a factor of two is commonly applied to static loading as a conservative 
rule of thumb to assess sudden loads, irrespective of the time variation. In the real 
world the actual load history is seldom known, and often falls into the shadow-zone of 
mis-handling or abuse, where conservatism is very wise. 

If damping is included the solution becomes  

x = 
F
k 

⎣
⎢
⎡

⎦
⎥
⎤1-e-ζωt 

⎝
⎜
⎛

⎠
⎟
⎞cosωt + 

ζ
1-ζ2 sinωt   

The maximum displacement is xmax =  
F
k ( )1+ e-ζπ   so the dynamic amplification is 

( )1+ e-ζπ  , which becomes 2 for the case of zero damping as expected. In practice 
damping is rarely included in calculations of this sort since the damping ratio or the 
applied load are seldom known with any accuracy, the effect of damping  is small, and 
hair-splitting in this area has little practical value. 

 

RECTANGULAR PULSE 
 
Intuitively the response to a pulse should depend on the pulse duration, τ, and the 
system natural frequency, ω. The maximum response to a long step occurs at the instant 
when (1-cosωt) = 2 for which ωt = π. This is half the period of vibration of the system, T 

= 
2π
ω  . Consequently rectangular pulses longer than half the system period produce the 

same dynamic amplification as the stepped force. Conversely pulses much shorter than 
half the system period don’t act long enough to produce significant displacement, so the 
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amplification is less than 2. In fact the maximum displacement  for pulse widths, τ less 
than half the system period is  

xmax =  
2F
k   sin

⎝
⎜
⎛

⎠
⎟
⎞πτ

T   valid for τ ≤ 
T
2  

For skeptics, Reference 1 has a simple, elegant proof of that relationship unobscured by 
excess arithmetic. The figure shows the complete dynamic amplification for the 
rectangular pulse, which in this case varies with the ratio of pulse width to system 
period as we anticipated. The figure shows that softer systems amplify shock loads less 
than stiffer systems, and in fact the pulse response level is a way to distinguish a stiff 
system from a soft one. This variation gives a rational means for assessing the severity 
of a shock load. Reference 2 shows that most pulse or spike loadings show this same 
sort of variation with peak dynamic amplification occurring for pulse widths between 
50% and 100% of the system period. 

Pulse width/period – τ/T
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RAMPED STEP 
 
A final variation on the stepped force response is the ramped step shown in the figure. 

Again, the figure shows what 
we know intuitively, that the 
more gradual the application 
of force the less severe the 
amplification. The maximum 
displacement is 

xmax =  
F
k 

⎝
⎜
⎛

⎠
⎟
⎞

1 + 
⎪
⎪
⎪

⎪
⎪
⎪T

πτsin
⎝
⎜
⎛

⎠
⎟
⎞πτ

T   

The dynamic amplification for 
a very short rise time, τ, equals 
2 because the force transient is 
more nearly a stepped force. 
The more gradual the rise–the 
longer the rise time–the lower 

the dynamic amplification, because the load is applied more nearly statically. The 
diagram can also be used to distinguish a static load from a dynamic load.  

0.0

1.0

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

F

tτ

Dy
na

mi
c a

mp
lifi

ca
tio

n –
 K

x ma
x/F

Rise time/period – τ/T  

 

REFERENCES 
 
The following references contain details of  much of what is presented above in 
summary. Reference 1 is particularly recommended as a good practical introduction to 
the subject. Reference 2 is a handbook with much valuable supporting information. 
References 3 and 4 are standard textbooks which are as good as any and better than 
most. 

1. Irvine, H. M., Structural Dynamics for the Practising Engineer, Allen and Unwin, 
London, 1986. 

2. Harris, Cyril and Crede, Charles, Shock and Vibration Handbook, McGraw-Hill, 
New York, 1976. 

3. Timoshenko, S. P., Young, D.H., Weaver, W., Vibration Problems in Engineering, 
Wiley, New York, 1974. 

4. Den Hartog, J. P., Mechanical Vibrations, Dover Publications, New York.  
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