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Singularity Functions

Introduction
– The integration method discussed earlier 

becomes tedious and time-consuming 
when several intervals and several sets of 
matching conditions are needed.

– We noticed from solving deflection 
problems by the integration method that 
the shear and moment could only rarely 
described by a single analytical function.
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Singularity Functions

Introduction
– For example the cantilever beam of Figure 

9a is a special case where the shear V and 
bending moment M can be represented by 
a single analytical function, that is
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Singularity Functions

Introduction
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Singularity Functions

Introduction
– While for the beam of Figure 9b, the shear 

V or moment M cannot be expressed in a 
single analytical function.  In fact, they 
should be represented for the three 
intervals, namely

0 ≤ x ≤ L/4,
L/4 ≤ x ≤ L/2, and
L/2 ≤ x ≤ L
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Singularity Functions

Introduction
– For the three intervals, the shear V and the 

bending moment M can are given, 
respectively, by
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Singularity Functions

Introduction
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Singularity Functions

Introduction
– We see that even with a cantilever beam 

subjected to two simple loads, the 
expressions for the shear and bending 
moment become complex and more 
involved.

– Singularity functions can help reduce this 
labor by making V or M represented by  a 
single analytical function for the entire 
length of the beam. 
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Singularity Functions

Basis for Singularity Functions
– Singularity functions are closely related to 

he unit step function used to analyze the 
transient response of electrical circuits.

– They will be used herein for writing one 
bending moment equation (expression) 
that applies in all intervals along the beam, 
thus eliminating the need for matching 
equations, and reduce the work involved.
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Singularity Functions

Definition
A singularity function is an expression for x
written as            , where n is any integer 
(positive or negative) including zero, and x0
is a constant equal to the value of x at the 
initial boundary of a specific interval along 
the beam. 

nxx 0−
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Singularity Functions

Properties of Singularity Functions
– By definition, for n ≥ 0,

– Selected properties of singularity functions 
that are useful and required for beam-
deflection problems are listed in the next 
slides for emphasis and ready reference.
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Singularity Functions

Selected Properties
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Singularity Functions

Integration and Differentiation of 
Singularity Functions
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Examples: Singularity Functions
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Singularity Functions


