Armónica	Corriente d	de fase	Corriente de	Corriente de neutro		
h	A rms	A rms ²	A rms	A rms²		
1	1,201	1,442	0,000	0,000		
3	0,977	0,955	2,931	8,591		
5	0,620	0,384	0,000	0,000		
7	0,264	0,070	0,000	0,000		
9	0,068	0,005	0,204	0,042		
11	0,114	0,013	0,000	0,000		
13	0,089	0,008	0,000	0,000		
15	0,029	0,001	0,087	0,008		
17	0,042	0,002	0,000	0,000		
19	0,044	0,002	0,000	0,000		
21	0,019	0,000	0,057	0,003		
23	0,020	0,000	0,000	0,000		
total	1,698	2,882	2,940	8,643		

$$Y_s = \frac{X_s^4}{192 + 0.8X_s^4}$$

$$X_s^2 = \frac{8\pi f}{R'} * 10^{-4} K_s$$

donde:

f = frecuencia del sistema, Hz

R' = resistencia del conductor a la c.d. corregida a la temp. de operacion, ohm/Km

La resistencia del conductor incrementa con la frecuencia debido al efecto piel.

Una expresion conservadora para el factor de correccion (q) de corriente para cables

que transportan corrientes armonicas se deriva de añadir las perdidas I²R producida por cada armonica

$$q = I_1^2 E_1 + I_2^2 + \dots I_n^2 E_n$$

donde I₁, I₂,I_n es la razon de la corriente armonica a la corriente de frecuencia fundamental

 E_1 , E_2 ,... E_n es la razon de debida al efecto piel (resistencia efectiva del cable a la frecuencia armonica a la resistencia a la frecuencia fundamental.

Ejemplo:

Determine el factor q requerido para un cable (60Hz) que transporta una carga no lineal con las siguientes características armónicas.

	Amps.			R'	0.1966ohm/Km	60Hz
I1	190	I(1)	1	R(60)	0.1972ohm/Km	
15	50	I(5)	0.263158	R(300)	0.2115ohm/Km	
17	40	I(7)	0.210526	R(420)	0.2254ohm/Km	
l11	15	I(11)	0.078947	R(660)	0.2655ohm/Km	
l13	10	I(13)	0.052632	R(780)	0.2907ohm/Km	