1.2 Algorithms as a technology 11

Exercises

L1-1
Give a real-world example that requires sorting or a real-world example that re-
quires computing a convex hull.

1.1-2
Other than speed, what other measures of efficiency might one use in a real-world
setting?

1.1-3
Select a data structure that you have seen previously, and discuss its strengths and
limitations.

1.14
How are the shortest-path and traveling-salesman problems given above similar?
How are they different?

1.1-5

Come up with a real-world problem in which only the best solution will do. Then
come up with one in which a solution that is “approximately” the best is good
enough.

1.2 Algorithms as a technology

Suppose computers were infinitely fast and computer memory was free. Would
you have any reason to study algorithms? The answer is yes, if for no other reason
than that you would still like to demonstrate that your solution method terminates
and does so with the correct answer.

If computers were infinitely fast, any correct method for solving a problem
would do. You would probably want your implementation to be within the bounds
of good software engineering practice (for example, your implementation should
be well designed and documented), but you would most often use whichever
method was the easiest to implement.

Of course, computers may be fast, but they are not infinitely fast. And memory
may be inexpensive, but it is not free. Computing time is therefore a bounded
resource, and so is space in memory. You should use these resources wisely, and
algorithms that are efficient in terms of time or space will help you do so.

Anita

12

Chapter 1 The Role of Algorithms in Computing

Efficiency

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢;n? to sort 1 items, where ¢,
is a constant that does not depend on 7. That is, it takes time roughly proportional
to n%. The second, merge sort, takes time roughly equal to c,nlgn, where Ign
stands for log, n and ¢, is another constant that also does not depend on 7. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢; < c¢5.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as ¢;n - n and merge sort’s running time as ¢, - lgn. Then we see that where
insertion sort has a factor of # in its running time, merge sort has a factor of Ign,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when 7 equals one million, gz is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller ¢, is
than c,, there will always be a crossover point beyond which merge sort is faster.

For a concrete example, let us pit a faster computer (computer A) running inser-
tion sort against a slower computer (computer B) running merge sort. They each
must sort an array of 10 million numbers. (Although 10 million numbers might
seem like a lot, if the numbers are eight-byte integers, then the input occupies
about 80 megabytes, which fits in the memory of even an inexpensive laptop com-
puter many times over.) Suppose that computer A executes 10 billion instructions
per second (faster than any single sequential computer at the time of this writing)
and computer B executes only 10 million instructions per second, so that com-
puter A is 1000 times faster than computer B in raw computing power. To make
the difference even more dramatic, suppose that the world’s craftiest programmer
codes insertion sort in machine language for computer A, and the resulting code
requires 2n? instructions to sort 7 numbers. Suppose further that just an average
programmer implements merge sort, using a high-level language with an inefficient
compiler, with the resulting code taking 50n Ig n instructions. To sort 10 million
numbers, computer A takes

2 - (107)? instructions

1010 instructions/second

= 20,000 seconds (more than 5.5 hours) ,

while computer B takes

1.2 Algorithms as a technology 13

50 - 107 1g 107 instructions
107 instructions/second

~ 1163 seconds (less than 20 minutes) .

By using an algorithm whose running time grows more slowly, even with a poor
compiler, computer B runs more than 17 times faster than computer A! The advan-
tage of merge sort is even more pronounced when we sort 100 million numbers:
where insertion sort takes more than 23 days, merge sort takes under four hours.
In general, as the problem size increases, so does the relative advantage of merge
sort.

Algorithms and other technologies

The example above shows that we should consider algorithms, like computer hard-
ware, as a fechnology. Total system performance depends on choosing efficient
algorithms as much as on choosing fast hardware. Just as rapid advances are being
made in other computer technologies, they are being made in algorithms as well.

You might wonder whether algorithms are truly that important on contemporary
computers in light of other advanced technologies, such as

* advanced computer architectures and fabrication technologies,
* easy-to-use, intuitive, graphical user interfaces (GUIs),

* object-oriented systems,

* integrated Web technologies, and

* fast networking, both wired and wireless.

The answer is yes. Although some applications do not explicitly require algorith-
mic content at the application level (such as some simple, Web-based applications),
many do. For example, consider a Web-based service that determines how to travel
from one location to another. Its implementation would rely on fast hardware, a
graphical user interface, wide-area networking, and also possibly on object ori-
entation. However, it would also require algorithms for certain operations, such
as finding routes (probably using a shortest-path algorithm), rendering maps, and
interpolating addresses.

Moreover, even an application that does not require algorithmic content at the
application level relies heavily upon algorithms. Does the application rely on fast
hardware? The hardware design used algorithms. Does the application rely on
graphical user interfaces? The design of any GUI relies on algorithms. Does the
application rely on networking? Routing in networks relies heavily on algorithms.
Was the application written in a language other than machine code? Then it was
processed by a compiler, interpreter, or assembler, all of which make extensive use

14

Chapter 1 The Role of Algorithms in Computing

of algorithms. Algorithms are at the core of most technologies used in contempo-
rary computers.

Furthermore, with the ever-increasing capacities of computers, we use them to
solve larger problems than ever before. As we saw in the above comparison be-
tween insertion sort and merge sort, it is at larger problem sizes that the differences
in efficiency between algorithms become particularly prominent.

Having a solid base of algorithmic knowledge and technique is one characteristic
that separates the truly skilled programmers from the novices. With modern com-
puting technology, you can accomplish some tasks without knowing much about
algorithms, but with a good background in algorithms, you can do much, much
more.

