# Redes de Datos

Direccionamiento y Enrutamiento de Datos

# **Objectives**

### **Network Layer Protocols**

- Describe the purpose of the network layer in data communication.
- Explain why the IPv4 protocol requires other layers to provide reliability.
- Explain the role of the major header fields in the IPv4 and IPv6 packet.

### Routing

- Explain how a host device uses routing tables to direct packets to itself, a local destination, or a default gateway.
- Compare a host routing table to a routing table in a router.

### Addressing

Subnetting & VLSM

Supernetting

# Network Layer Protocols Network Layer in Communications

### The Network Layer

- End to End Transport processes
- Addressing end devices
- Encapsulation
- Routing

IPv4

IPv/6

De-encapsulating

### Network Layer Protocols



Network layer protocols forward transport layer PDUs between hosts.

**Network Layer Protocols** 

# **Characteristics of the IP Protocol**

### Encapsulating IP

- Segments are encapsulated into IP packets for transmission.
- The network layer adds a header so packets can be routed to the destination.
- P Connectionless
  - Sender doesn't know if the receiver is listening or the message arrived on time.
  - Receiver doesn't know data is coming.
  - IP Best Effort Delivery
    - No guarantees of delivery are made.
- IP Media Independent
  - IP can travel over different types of media.





- Version = 0100
- DS = Packet Priority
- TTL = Limits life of Packet
- Protocol = Upper layer protocol such as TCP
- Source IP Address = source of packet
- Destination IP Address = destination of packet

### Network Layer Protocols IPv6 Packet

- Limitations of IPv4
  - IP address depletion
  - Internet routing table expansion
  - Lack of end-to-end connectivity
- Introducing IPv6
  - Increased address space
  - Improved packet handling
  - Eliminates the need for NAT
  - EncapsulatingIPv6
    - Simplified header format
    - No checksum process requirement
    - More efficient Options Header mechanism
    - Flow Label field makes it more efficient.

# Network Layer Protocols IPv6 Packet (Cont.)

### IPv6 Packet Header

#### Fields in the IPv6 Packet Header



- Version = 0110
- Traffic Class = Priority
- Flow Label = same flow will receive same handling
- Payload Length
   = same as total
   length
- Next Header = Layer 4 Protocol
- Hop Limit = Replaces TTL field

### Routing How a Host Routes

- Host Forwarding Decision
  - Three types of destination: itself, local host, remote host.
- Default Gateway
  - Routes traffic to other networks
  - Has a local IP address in the same address range as other hosts on the network
  - Can take data in and forward data out

### Using the Default Gateway

Hosts will use the default gateway when sending packets to remote networks.

- Host Routing Tables
  - Use the netstat –r command to display the

host routing table on a Windows machine.



# Routing How a Host Routes (Cont.)

#### IPv4 Routing Table for PC1



| <pre><output omitted=""> IPv4 Route Table</output></pre> |                 |              |               |        |
|----------------------------------------------------------|-----------------|--------------|---------------|--------|
| Active Routes:                                           |                 |              | ************* |        |
| Network Destinatio                                       | n Netmask       | Gateway      | Interface     | Metric |
| 0.0.0.0                                                  | 0.0.0.0         | 192.168.10.1 | 192.168.10.10 | 2.5    |
| 127.0.0.0                                                | 255.0.0.0       | On-link      | 127.0.0.1     | 306    |
| 127.0.0.1                                                | 255.255.255.255 | On-link      | 127.0.0.1     | 306    |
| 127.255.255.255                                          | 255.255.255.255 | On-link      | 127.0.0.1     | 306    |
| 192,168,10.0                                             | 255.255.255.0   | On-link      | 192.168.10.10 | 281    |
| 192.168.10.10                                            | 255.255.255.255 | On-link      | 192.168.10.10 | 281    |
| 192,168,10,255                                           | 255.255.255.255 | On-link      | 192.168.10.10 | 281    |
| 224.0.0.0                                                | 240.0.0.0       | On-link      | 127.0.0.1     | 308    |
| 224.0.0.0                                                | 240.0.0.0       | On-link      | 192.168.10.10 | 281    |
| 255.255.255.255                                          | 255.255.255.255 | On-link      | 127.0.0.1     | 308    |
| AFF AFF AFF AFF                                          | 255 255 255 255 | On-link      | 192.168.10.10 | 281    |

<output omitted>

#### How a Host Routes

# **Router Routing Tables**

- Router Packet Forwarding Decision
  - Routers and hosts forward packets in a similar fashion.
  - The main difference is that routers have more interfaces while hosts often have only one.
  - Devices on directly connected networks can be reached directly.
  - Devices on remote networks are reached through gateway.

#### IPv4 Router Routing Table

- The router routing table stores network routes the router knows about.
- Use the show ip route command to display the routing table on a Cisco router.
- The router routing table also has information on: how the route was learned, its trustworthiness and rating.
- It also contains which interface to use to reach that specifc destination.
- Øirectly Connected Routing Table Entries
  - C Identifies a directly-connected network, automatically created when an interface is configured with an IP address and activated.
  - L Identifies that this is a local interface. This is the IPv4 address of the interface on the router.

Remote Network Routing Table Entries

Xx

#### Next-Hop Address

XX

How a Host Routes

# Router Routing Tables (Cont.)

G

### Remote Network **Routing Table Entries**

- Remote destinations can't be reached directly.
- Remote routes contain the address of the intermediate network device to be used to reach the destination.
- Next-Hop Address
  - Next-Hop address is the address of the intermediate device used o reach a specifc remote destination.



# **Binary and Decimal Conversion**

#### IPv4 Addresses

- consists of a string of 32 bits, divided into four sections called octets.
- Each octet contains 8 bits (or 1 byte) separated with a dot.

### Conversion between Binary to Decimal

Use the chart to help with conversion

| 192      | • | 168      | • | 10       | • | 10       |
|----------|---|----------|---|----------|---|----------|
| 11000000 |   | 10101000 |   | 00001010 |   | 00001010 |

192.168.10.10 is an IP address that is assigned to a computer.

| Positional Value | 128   | 64   | 32   | 16   | 8   | 4   | 2   | 1     |
|------------------|-------|------|------|------|-----|-----|-----|-------|
| Binary number    |       |      |      |      |     |     |     |       |
| Calculate        | x 128 | x 64 | x 32 | x 16 | × 8 | × 4 | x 2 | • x 1 |
| Add them up      |       |      |      |      |     |     |     |       |
| Result           |       |      |      |      |     |     |     |       |

# IPv4 Address Structure

- Network and Host Portions
- The Subnet Mask
- Logical AND
  - What is the network address for graphics?
- Prefix Length
  - What is the prefix length for the graphics?
- Network, Host, and Broadcast Addresses
  - Network Address?
  - Range of Valid Hosts?
  - Broadcast Address?

| Pv4 Address | Network Portion<br>192 . 168 . 10 | Host<br>Portion<br>10 |
|-------------|-----------------------------------|-----------------------|
|             | 11000000 10101000 00001010        | 00001010              |
| Subnet Mask | 255 . 255 . 255                   | 0                     |
|             | 11111111 1111111 11111111         | 0000000               |
|             |                                   |                       |

# IPv4 Unicast, Broadcast, and Multicast

- IPv4 Addressing Assignment to a Host
  - Static Type in manually
  - Dynamic Dynamic Host Configuration Protocol (DHCP)
- IPv4 Communication
  - Unicast send packets from one host to an individual host
  - Broadcast send packets from one host to all the hosts in the network
  - Multicast send a packet from one host to a selected group of hosts in the same or different network
    - Which types of communication are the graphics on the right?



# Types of IPv4 Addresses

- Public and Private IPv4 Addresses
  - Private addresses are not routed over the Internet
  - Private Addresses:
    - 10.0.0.0/8 or 10.0.0.0 to10.255.255.255
    - → 172.16.0.0 /12 or 172.16.0.0 to 172.31.255.255
    - 192.168.0.0 /16 or 192.168.0.0 to 192.168.255.255
  - Special User IPv4 Addresses
    - Loopback addresses
      - 1/27.0.0.0 /8 or 127.0.0.1 to 127.255.255.254
    - Link-Local addresses or Automatic Private IP Addressing (APIPA) addresses
      - 169.254.0.0 /16 or 169.254.0.1 to 169.254.255.254
    - **TEST-NET** addresses
      - 192.0.2.0/24 or 192.0.2.0 to 192.0.2.255
    - Classless Addressing
      - CIDR

Allocated IPv4 addresses based on prefix length

Assignment of IP Addresses





## IPv6 Network Addresses IPv4 Issues

- The Need for IPv6
  - Depletion of IPv4 address space
  - Internet of Everything
- IPv4 and IPv6 Coexistence
  - Dual Stack IPv4 and IPv6 on the same network
  - Tunneling IPv6 packets inside IPv4 packets
  - Translation IPv6 packet is translated to an IPv4 packet, and vice versa.

IPv6-only Network

NAT64 Router



### IPv6 Network Addresses IPv6 Addressing

#### **IPv6** Address Representation

x:x:x:x:x:x:x:x, where x represents 4 hexadecima values

х

0000

FFFF

х

0000

to

FFFF

- Apply the rules to simply these IPv6 Addresses
  - Rule 1: Omit Leading 0s
  - Rule 2: Ømit All 0 Segments
  - 2001: ODB8:0000:1133:0000:0000:0000:0200
  - 2001:0008:CAFE:0000:1111:0000:0000:0200
  - 2001:0008:000A:0000:0000:0000:0000:1000
  - 2001:0008:ACAD:1234:0000:0000:0000:0000
  - 2001:0DB8:0000:1111:0020:0000:ACAD:0000
  - FF02:0000:0000:0000:0000:0000:0000:0001
  - FE80:0000:0000:0000:0000:0000:0000:0003
  - 0000:0000:0000:0000:0000:0000:0000:0000

![](_page_16_Figure_14.jpeg)

| 0000 | 0000 | 0000 | 0000 |
|------|------|------|------|
| to   | to   | to   | to   |
| 1111 | 1111 | 1111 | 1111 |

Х

:

х

to

:

Х

х

0000

to

FFFF

### IPv6 Network Addresses Types of IPv6 Addresses

IPv6 Address Types 64 bits 64 bits Unicast Multicast Prefix Interface ID Anycast Example: 2001:DB8:A::/64 IPv6 Prefix Length 2001:0DB8:000A:0000 0000:0000:0000:0000 Indicates the network portion Format: IPv6 address /prefix length **Global Unicast** Prefix length range from 0 to 128 Typical length is /64 Link-local Common Types of IPv6 Addresses Loopback Unicast Addresses ::1/128 **IPv6 Unicast** Unique, Internet routable addresses Addresses Unspecified Address ¢onfigured statically or assigned dynamically ::/128 Link-Local Unicast Addresses Unique Local Communicate with other IPv6 enabled devices on the same link FC00::/7 - FDFF::/7 Device creates its own link local address without DHCP server Embedded IPv4 Unique Local Addresses Unique local unicast

Used for local addresses within a site or between a limited number of sites

# IPv6 Network Addresses IPv6 Unicast Addresses

- Structure of an IPv6 Global Unicast Address
  - Global Routing Prefix
  - Subnet ID
  - Interface ID
- Static Configuration of a Global Unicast Address
  - ipv6/address ipv6-address/prefix-length
  - Dynamic Configuration
    - SLAAC
    - DHCPv6
- Link-Local Addresses
  - Dynamic or Static
  - Verifying IPv6 Address Configuration
    - show ipv6 interface brief

![](_page_18_Figure_14.jpeg)

![](_page_18_Figure_15.jpeg)

![](_page_18_Figure_16.jpeg)

# IPv6 Network Addresses IPv6 Multicast Addresses

- Assigned IPv6 Multicast Addresses
  - IPv6 multicast addresses have the prefix FF00::/8
  - FF02::1 All-nodes multicast group
  - FF02::2 All-routers multicast group
- Solicited-Node IPv6 Multicast Addresses

![](_page_19_Figure_6.jpeg)

![](_page_19_Figure_7.jpeg)

Connectivity Verification

ICMP

- ICMPv4 and ICMPv6
  - Host Confirmation
  - Destination or Service Unreachable
  - Time Exceeded
  - Router Redirection
- ICMPv6 Router Solicitation and Router Advertisement Messages
  - Messaging between an IPv6 router and an IPv6 device:
  - Router Solicitation (RS) message
  - Router Advertisement (RA) message
  - Messaging between IPv6 devices:
  - Neighbor Solicitation (NS) message
  - Neighbor Advertisement (NA) message
  - Duplicate Address Detection (DAD)

![](_page_20_Figure_15.jpeg)