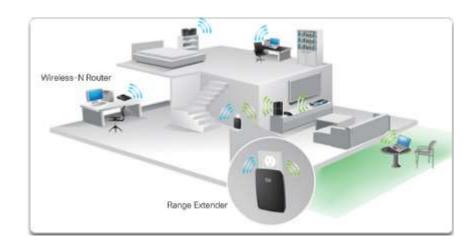

CAPITULO 2

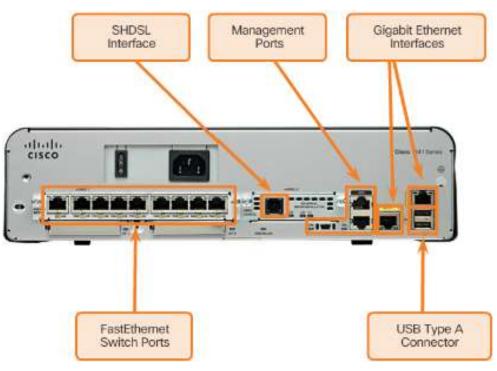
TRANSMISIÓN DE DATOS EN MEDIOS COMPARTIDOS

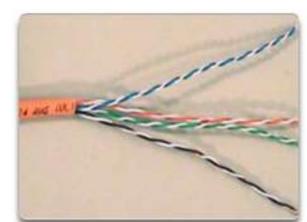
Purpose of the Physical Layer

- The Physical Layer
 - Accepts a complete frame from the data link layer
 - Encodes it as a series of signals that are transmitted onto the local media
- Physical Layer Media
 - Describe the media types
- Physical Layer Standards

Physical Layer Connection


• Types of Connections


Network Interface Cards

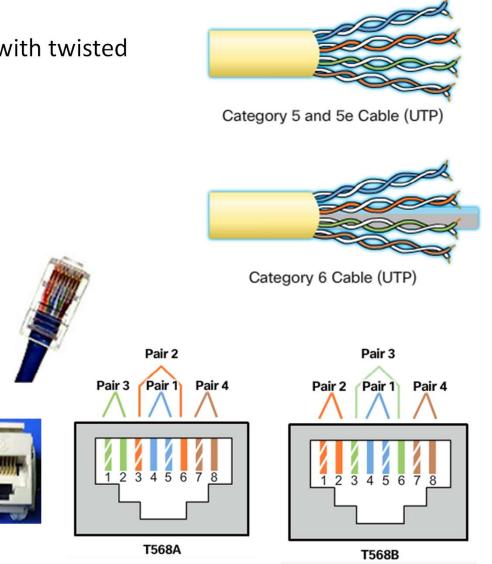

Physical Layer Protocols Physical Layer Characteristics

- Functions
 - Physical components
 - Encoding
 - Signaling
- Data Transfer
 - Bandwidth capacity to a medium to carry data
 - Throughput measure of the transfer of bits across the media
- Types of Physical Media

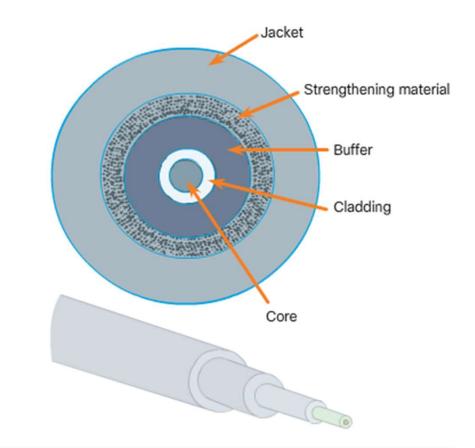
Network Media Copper Cabling

- Characteristics of Copper Cabling
 - Inexpensive, easy to install, low resistance to electric current
 - Distance and signal interference
- Copper Media
- Unshielded Twisted-Pair Cable
- Shielded Twisted-Pair Cable
- Coaxial Cable
- Copper Media Safety
 - Fire and electrical hazards

Unshielded Twisted-Pair (UTP) cable


Shielded Twisted-Pair (STP) cable

Coaxial cable


Network Media UTP Cabling

- Properties of UTP Cabling
 - Cancellation of EMI and RFI signals with twisted pairs
- UTP Cabling Standards
 - TIA/EIA-568
 - IEEE: Cat5, Cat5e, Cat6, Cat6e
- UTP Connectors
- Types of UTP Cable
 - Rollover
 - Crossover
 - Straight-through
- Testing UTP Cables
- Cable Pinouts

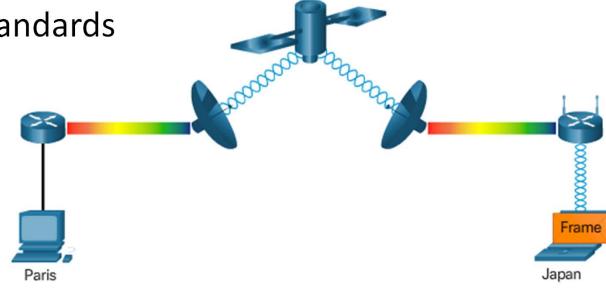
Network Media Fiber-Optic Cabling

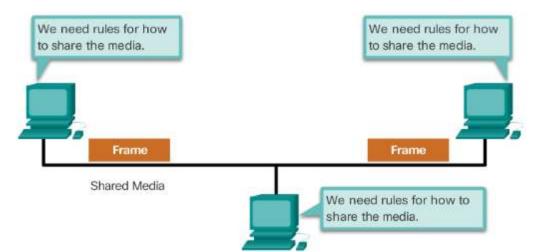
- Properties of Fiber-Optic Cabling
 - Transmits data over longer distances
 - Flexible, but thin strands of glass
 - Transmits with less attenuation
 - Immune to EMI and RFI
- Fiber Media Cable Design
- Types of Fiber Media
 - Single mode and multimode
- Fiber-Optic Connectors
- Testing Fiber Cables
- Fiber versus Copper

Implementation Issues	UTP Cabling	Fiber-optic Cabling
Bandwidth supported	10 Mb/s - 10 Gb/s	10 Mb/s - 100 Gb/s
Distance	Relatively short (1 - 100 meters)	Relatively high (1 - 100,000 meters)
Immunity to EMI and RFI	Low	High (Completely immune)
Immunity to electrical hazards	Low	High (Completely immune)
Media and connector costs	Lowest	Highest
Installation skills required	Lowest	Highest
Safety precautions	Lowest	Highest

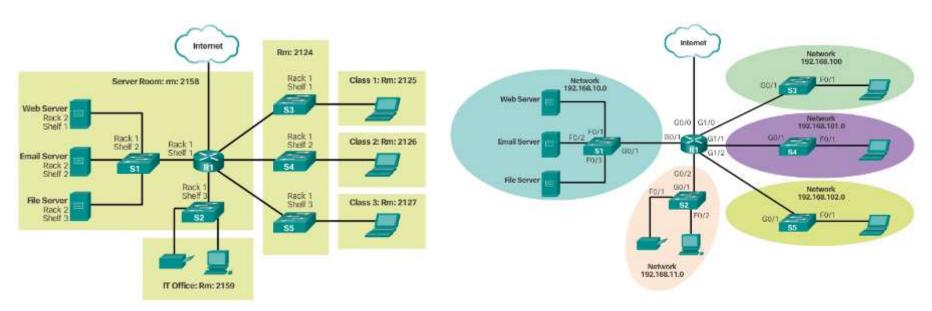
Network Media Wireless Media

- Properties of Wireless Media
 - Data communications using radio or microwave frequencies
- Types of Wireless Media
 - Wi-Fi, Bluetooth, WiMax
- Wireless LAN
 - Wireless Access Point
 - Wireless NIC adapters



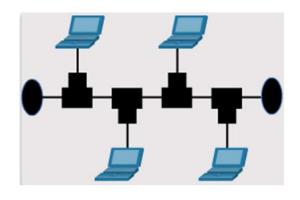

Data Link Layer Protocols Purpose of the Data Link Layer

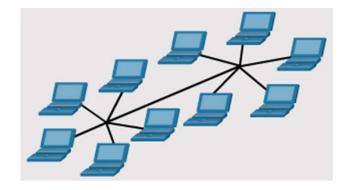
- The Data Link Layer
 - What is this layer responsible for?
- Data Link Sublayers
 - LLC communicates with the network layer
 - MAC defines the media access processes
- Providing Access to Media
- Data Link Layer Standards
 - IEEE
 - ITU
 - ISO
 - ANSI

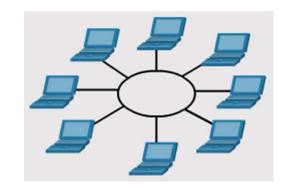


Media Access Control Topologies

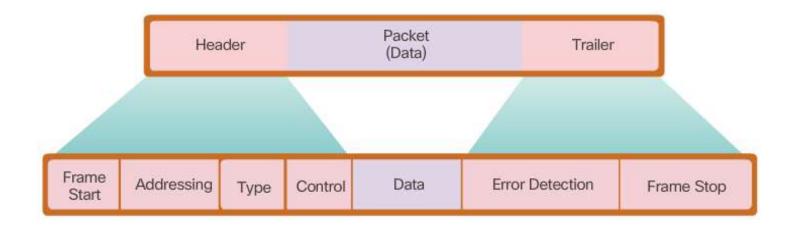
 Controlling Access to the Media


Physical and Logical Topologies




Media Access Control

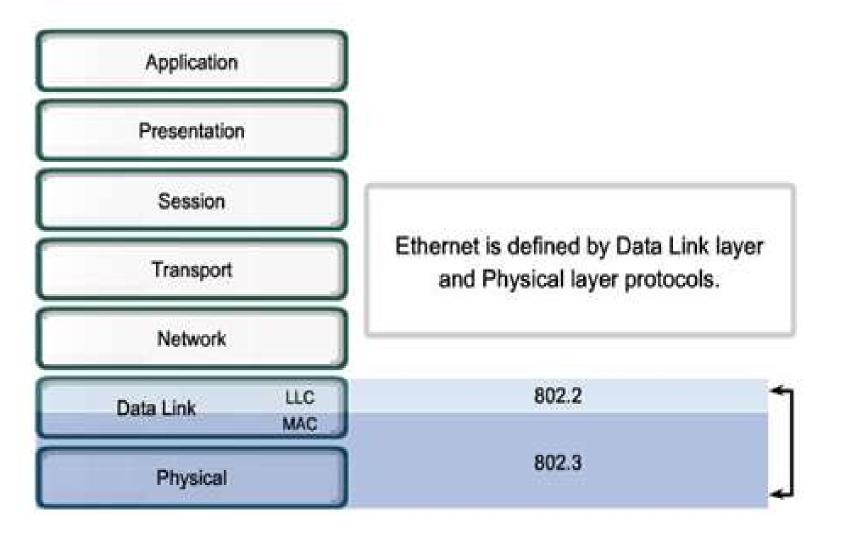
- Physical LAN Topologies
- Half and Full Duplex
- Media Access Control Methods
- Contention-Based Access
 - CSMA/CD vs. CSMA/CA



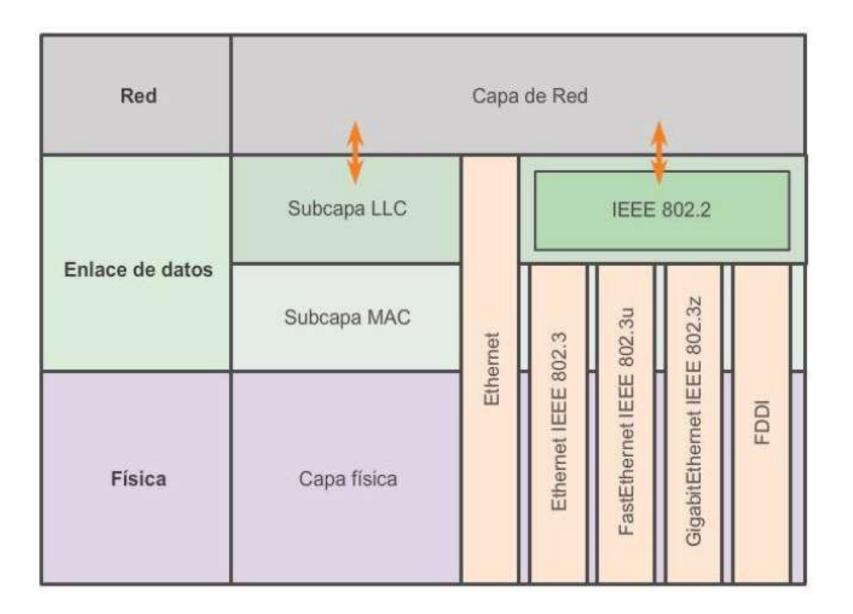
Media Access Control Data Link Frame

- The Frame
 - Header
 - Data
 - Trailer
- Frame Fields
- Layer 2 Address

LAN and WAN Frames


- 802.11 Wireless Frame
- PPP Frame
- HDLC
- Frame Relay
- Ethernet Frame

Ethernet Protocol Ethernet Frame



Ethernet Operation LLC and MAC Sublayers

Ethernet

Ethernet Operation LLC and MAC Sublayers

Ethernet Operation MAC Sublayer

Data Encapsulation

- Frame delimiting
- Addressing
- Error detection

Media Access Control

- · Control of frame placement on and off the media
- Media recovery

	Logical Link Control Sublayer								
-		802.3 Media Access Control							
Physical Layer	Physical Signaling Sublayer	10BASE5 (500m) 50 Ohm Coax N-Style	10BASE2 (185m) 50 Ohm Coax BNC	10BASE-T (100m) 100 Ohm UTP RJ-45	100BASE-TX (100m) 100 Ohm UTP RJ-45	1000BASE-CX (25m) 150 Ohm STP min-DB-9	1000BASE-T (100m) 100 Ohm UTP RJ-45	1000BASE-ST (220-550m) MM Fiber SC	1000BASE-LX (550-5000m) MM or SM Fiber SC
	Physical Medium								

The Evolution of Ethernet Standards to Meet Higher Speeds						
Date	IEEE Std.	Name	Data Rate	Type of Cabling		
1990	802.3i	10BASE-T	10 Mb/s	Category 3 cabling		
1995	802.3u	100BASE-TX	100 Mb/s*	Category 5 cabling		
1998	802.3z	1000BASE-SX	1 Gb/s	Multimode fiber		
	802.3z	1000BASE-LX/EX		Single mode fiber		
1999	802.3ab	1000BASE-T	1 Gb/s*	Category 5e or higher Category		
2003	802.3ae	10GBASE-SR	10 Gb/s	Laser-Optimized MMF		
	802.3ae	10GBASE-LR/ER		Single mode fiber		
2006	802.3an	10GBASE-T	10 Gb/s*	Category 6A cabling		
2015	802.3bq	40GBASE-T	40 Gb/s*	Category 8 (Class I & II) Cabling		
2010	802.3ba	40GBASE-SR4/LR4	40 Gb/s	Laser-Optimized MMF or SMF		
	802.3ba	100GBASE-SR10/LR4/ER4	100 Gb/s	Laser-Optimized MMF or SMF		
2015	802.3bm	100GBASE-SR4	100 Gb/s	Laser-Optimized MMF		
2016	SG	Under development	400 Gb/s	Laser-Optimized MMF or SMF		
Note: *with auto negotiation						

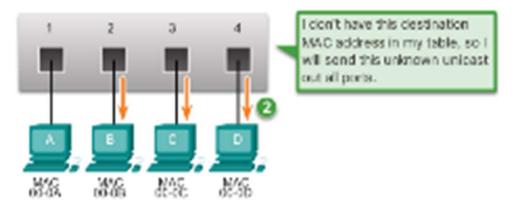
Ethernet Standard	Media Type	Bandwidth Limit	Distance Limit	
10BASE5	Coax (Thicknet)	10 Mbps	500 m	
10BASE2	Coax (Thinnet)	10 Mbps	185 m	
10BASE-T	Category 3 (or higher) UTP	10 Mbps	100 m	
100BASE-TX	Category 5 (or higher) UTP	100 Mbps	100 m	
100BASE-FX	MMF	100 Mbps	2 km	
1000BASE-T	Category 5e (or higher) UTP	1 Gbps	100 m	
1000BASE-TX	Category 6 (or higher) UTP	1 Gbps	100 m	
LOOOBASE-LX	MMF/SMF	1 Gbps/1 Gbps	550 m/5 km	
LOOOBASE-LH	SMF	1 Gbps	10 km	
LOOOBASE-ZX	SMF	1 Gbps	70 km	
LOGBASE-SR	MMF	10 Gbps	20 - 300 m	
LOGBASE-LR	SMF	10 Gbps	10 - 25 km	
LOGBASE-ER	SMF	10 Gbps	40 km	
LOGBASE-SW	MMF	10 Gbps	300 m	
10GBASE-T	Category 6a (or higher)	10 Gbps	100 m	
LOOGBASE-SR10	MMF	100 Gbps	125 m	
LOOGBASE-LR4	SMF	100 Gbps	10 km	
100GBASE-ER4	SMF	100 Gbps	40 km	

LAN Switches Switch Forwarding Methods

• Frame Forwarding Methods on Cisco Switches

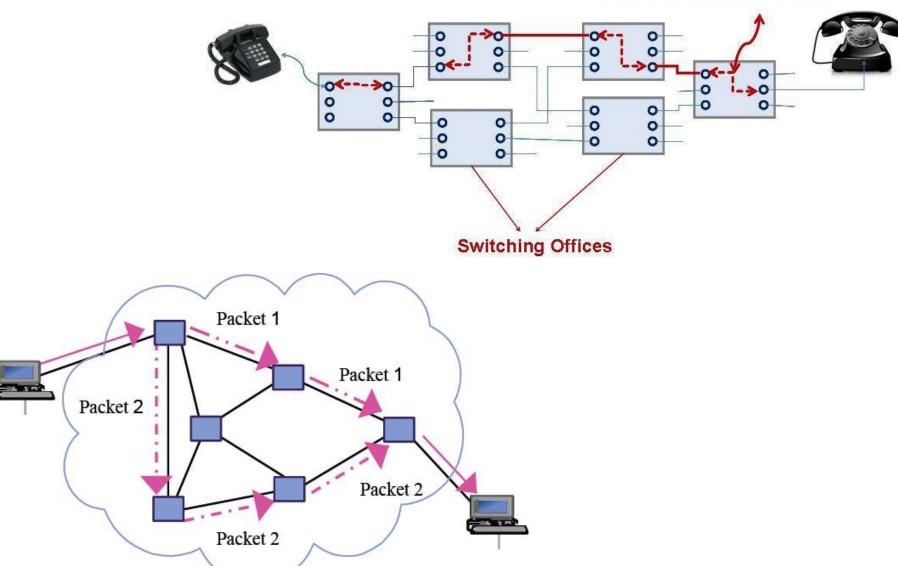
- Store-And-Forward
- Cut-Through

Cut-Through Switching


- Fast-forward switching
 - Lowest level of latency immediately forwards a packet after reading the destination address.
 - Typical cut-through method of switching.
- Fragment-free switching
 - Switch stores the first 64 bytes of the frame before forwarding.
 - Most network errors and collisions occur during the first 64 bytes.

Memory Buffering on Switches

• Port-based memory & Share memory


LAN Switches Switch Forwarding

Destration MAC 00-00	Source MAC 00-DA	Турс	Data	RCS
-------------------------	---------------------	------	------	-----

Circuit Switching vs Packet Switching

Physical Connection is setup When call connection is made