TRANSMISION
CONFIABLE DE DATOS

REDES DE DATOS

TRANSPORT LAYER PROTOCOLS

TRANSPORTATION OF DATA

Role of the Transport Layer

Responsible for establishing a temporary communication session between two
applications and delivering data between them.

Provides Connection-oriented data stream support, Reliability, Flow control,
Multiplexing

Transport Layer Responsibilities
Track individual conversations.
Segment Data and Reassemble Segments.

|dentify the Applications.

Conversation Multiplexing
Segments data into small chunks.

Label data chunks according to the conversation.

Transport Layer Reliability
Two protocols provided: TCP and UDP.
TCP supports reliability while UDP doesn't.

TRANSPORT LAYER PROTOCOLS

TRANSPORTATION OF DATA

TCP
Supports packet delivery confirmation.
There are three basic operations that enable reliability with TCP:

Numbering and tracking data segments transmitted to a specific
host from a specific application

Acknowledging received data

Retransmitting any unacknowledged data after a certain period
of time

UDP

UDP provides the basic functions for delivering data segments between

the
appropriate applications, with very little overhead and data checking.

Perfect for applications that don’t require reliability.

The Right Transport Layer Protocol for the Right Application
TCP is better for databases, web browsers, email clients, etc.
UDP is better for live audio or video streaming, VolP, etc.

TCP OVERVIEW

TCP Features
Establishing a session
Reliable delivery
Same-Order delivery

Flow control

TCP Header

TCP is a stateful protocol.

TCP adds 20 bytes of overhead
in the segment header.

Bit(15) Bit({16)

Source Port (16) Destination Port (16)

Sequence Number (32)

Acknowledgement Number (32)
L;nhﬁau Reserved (6) | Control Bits (6) Window (16)
Checksum (16) Urgent (16)
Options (0 or 32 if any)

Application Layer Data (Size vanes)

20 Bytes

UDP OVERVIEW

UDP Features
Simple and fast.

UDP Header

UDP is a stateless protocol.

Reliability must be handled by the application.

The pieces of communication in UDP are called Datagrams.
UDP adds only 8 bytes of overhead.

Source Port (16)

Bit(15) Bit(16)

Destination Port (16)

Length (16)

Checksum (16)

Application Layer Data (Size varies)

8 Bytes

PORT NUMBERS

Multiple Separate Conversations

The transport layer separate sand manages multiple
communications with different transport requirements.

Different applications are sending and receiving data over the
network simultaneously.

Unique header values allow TCP and UDP to manage these
multiple and simultaneous conversations by identifying these
applications.

These unique identifiers are the port numbers.

Port Numbers

Usually seen in pairs: source port and destination port.
The source port is dynamically chosen by the sender.

The destination port is used to identify an application on the server
(destination).

lrr‘-.._. E— | |
[F O 1
Tt ol g e, ol : —qu
L Fromre ries s g s - el
| Subject: Ermal = |
| - 1
- | pEmws
E = ¥
= =
Cifterar
-l’-.!'.lr.ill:ﬂljl.‘-l'ﬂ-'- Elacineic Mall HTRL Paaga Internat Crat
(B] o [ope— 1 P [HTTPR [K
Applcation Appicalion Applicaicr
Trassgeat B etz Borl Craliz Par
Eorl Nurmbars —= 11 L] B39

TCP AND UDP

Socket Pairs

The combination of the source IP address and source port number, or the
destination IP address and destination port number, is known as a socket.

The socket is used to identify the server and service being requested by
the client.

Two sockets combine to form a socket pair: (192.168.1.5:1099,
192.168.1.7:80).

Sockets enable multiple processes running on a client and multiple
connections to a server process to be distinguished from each other.

Port Number Groups
The IANA has created three port number groups:
Well-known ports (O to 1023)
Registered Ports (1024 to 49151)
Private and /or Dynamic Ports (49152 to 65535)

TCP COMMUNICATION PROCESS

TCP Server Processes
Each application process running on the server uses a port number.

An individual server cannot have two services assigned to the same port number within
the same transport layer service.

An active server application assigned to a specific port is considered to be open.

Any incoming client request addressed to an open port is accepted and processed by the
server application bound to that port.

There can be many ports open simultaneously on a server, one for each active server
application.

TCP Connection Establishment

A TCP connection is established in three steps:

The initiating client requests a client-to-server communication session with the
server.

The server acknowledges the client-to-server communication session and requests
a server-to-client communication session.

The initiating client acknowledges the server-to-client communication session.

TCP COMMUNICATION PROCESS

TCP Session Termination
The FIN TCP flag is used to terminate a TCP connection.

When the client has no more data to send in the stream, it sends a
segment with the FIN flag set.

The server sends an ACK to acknowledge the receipt of the FIN to
terminate the session from client to server.

The server sends a FIN to the client to terminate the server-to-client
session.

The client responds with an ACK to acknowledge the FIN from the server.
When all segments have been acknowledged, the session is closed.

TCP Three-way Handshake Analysis
The three-way handshake:
Establishes that the destination device is present on the network.

Verifies that the destination device has an active service and is accepting
requests on the destination port number that the initiating client intends to
use

Informs the destination device that the source client intends to establish a
communication session on that port number.

RELIABILITY AND FLOW CONTROL
TCP Reliability — Ordered Delivery

TCP segments use sequence numbers to uniquely identify
and acknowledge each segment, keep track of segment
order, and indicate how to reassemble and reorder
received segments.

An initial sequence number (ISN) is randomly chosen
during the TCP session setup. The ISN is then incremented
by the number of transmitted bytes.

The receiving TCP process buffers the segment data until
all data is received and reassembled.

Segments received out of order are held for later
processing.

The data is delivered to the application layer only when
it has been completely received and reassembled.

Differen segments
may take diferam
roubes.

—
Hating taken

diffemant rones;

bey thie
destination,
MEnts
ﬁ%mﬂm
orcler.

RELIABILITY AND FLOW CONTROL

TCP Flow Control — Window Size and
Acknowledgments

TCP provides mechanisms for flow control.
Flow control ensures the TCP endpoints can receive and process data reliably.

TCP handles flow control by adjusting the rate of data flow between source
and destination for a given session.

TCP flow control function relies on a 16-bit TCP header field called the
Window size. The window size is the number of bytes that the destination
device of a TCP session can accept and process at one time.

TCP source and destination agree on the initial window size when the TCP
session is established

TCP endpoints can adjust the window size during a session if necessary.

MSS & Maximum Segment Sbe
5 5

Durng Tree-way Fancshake Vindow
sou 10000, MSS 1,480
Send wincowy 10,000 | =

1,400 bytes
Sequence number | | Recoww 11,480
1 460 byytns
Soquence rumder 1,461 - | Roceve 1461 - 2,020
ACK 200

Rocolie acknonodgomenm Wincow sze 10,000
Send winckowy 12 020 | -

1 48D ytusn

Soquence rumder 2921 = | Rocche 2921 - 4380
ACK 4,33

‘M‘lllw size 10,000

Recenie ,
Send wincioww 14, 380

Trhe window size detormings T°e numbder ofF Bytes ot can D2 20nt Detore expactng an acknowiedgment.
Tre scknowfedgement rember & D nurders of Bw oo sogmactind Dyda

TCP Flow Control — Congestion Avoidance

Network congestion usually results in discarded packets.

Undelivered TCP segments trigger re-transmission. TCP segment
retransmission can make the congestion even worse.

The source can estimate a certain level of network congestion by
looking at the rate at which TCP segments are sent but not
acknowledged.

The source can reduce the number of bytes it sends before
receiving an
acknowledgement upon congestion detection.

The source reduces the number of unacknowledged bytes it sends
and not
the window size, which is determined by the destination.

The destination is usually unaware of the network congestion and
sees no need to suggest a new window size.

I'm not getting the acknowledgments | expect from PC 8 =0 | wll reduce
the number of bytes | send belore getling & scnoatedgement.

TCP segment 2 "

TCP segment 3

>

Ackrovdedgement numbars are for the next expected byte and not for a segment. Segment
number are orly used bere for simplaty.

UDP Low Overhead Vs. Reliability
UDP has much lower overhead than TCP.

UDP is not connection-oriented and does not offer the
sophisticated retransmission, sequencing, and flow control
mechanisms.

Applications running UDP can still use reliability, but it must be
implemented in the application layer.

However, UDP is not inferior.

UDP Datagram Reassembly

UDP simply reassembles the data in the order in which it was
received.

The application must identify the proper sequence, if necessary.

UDP Server Processes and Requests

UDP-based server applications are also assigned well-known or
registered port numbers.

Requests received on a specific port are forwarded to the proper
application based on port numbers.

UDP Client Processes

UDP client-server communication is also initiated by o
client application.

The UDP client process dynamically selects a port
number and uses this as the source port.

The destination port is usually the well-known or
registered port number assigned to the server process.

The same source-destination pair of ports is used in the
header of all datagrams used in the transaction.

Data returning to the client from the server uses a
flipped source and destination port numbers in the
datagram header.

Applications that Use TCP

TCP handles all transport layer related tasks.

This frees the application from having to manage any of these
tasks.

Applications can simply send the data stream to the transport
layer and use the services of TCP.

Applications that Use UDP

Live video and multimedia applications - Can tolerate some data
loss, but require little or no delay. Examples include VolP and live
streaming video.

Simple request and reply applications - Applications with simple
transactions where a host sends a request and may or may not
receive a reply. Examples include DNS and DHCP.

Applications that handle reliability themselves — Unidirectional
communications where flow control, error detection,
acknowledgements, and error recovery is not required or can be
handled by the application.

Examples include SNMP and TFTP.

