
TRANSMISIÓN
CONFIABLE DE DATOS

REDES DE DATOS 



TRANSPORT LAYER PROTOCOLS

TRANSPORTATION OF DATA
Role of the Transport Layer
 Responsible for establishing a temporary communication session between two 

applications and delivering data between them.

 Provides Connection-oriented data stream support, Reliability, Flow control, 
Multiplexing

Transport Layer Responsibilities
 Track individual conversations.

 Segment Data and Reassemble Segments.

 Identify the Applications.

Conversation Multiplexing
 Segments data into small chunks.

 Label data chunks according to the conversation.

Transport Layer Reliability
 Two protocols provided: TCP and UDP.

 TCP supports reliability while UDP doesn’t.



TRANSPORT LAYER PROTOCOLS

TRANSPORTATION OF DATA
TCP
 Supports packet delivery confirmation.
 There are three basic operations that enable reliability with TCP:

• Numbering and tracking data segments transmitted to a specific 
host from a specific application

• Acknowledging received data
• Retransmitting any unacknowledged data after a certain period 

of time

UDP
 UDP provides the basic functions for delivering data segments between 
the
appropriate applications, with very little overhead and data checking.

 Perfect for applications that don’t require reliability.

The Right Transport Layer Protocol for the Right Application
 TCP is better for databases, web browsers, email clients, etc.
 UDP is better for live audio or video streaming, VoIP, etc.



TCP OVERVIEW

TCP Features
 Establishing a session

 Reliable delivery

 Same-Order delivery

 Flow control

TCP Header
 TCP is a stateful protocol.

 TCP adds 20 bytes of overhead 
in the segment header.



UDP OVERVIEW
UDP Features
 Simple and fast.

UDP Header
 UDP is a stateless protocol.

 Reliability must be handled by the application.

 The pieces of communication in UDP are called Datagrams.

 UDP adds only 8 bytes of overhead.



PORT NUMBERS

Multiple Separate Conversations
 The transport layer separate sand manages multiple 
communications with different transport requirements.

 Different applications are sending and receiving data over the 
network simultaneously.

 Unique header values allow TCP and UDP to manage these 
multiple and simultaneous conversations by identifying these 
applications.

 These unique identifiers are the port numbers.

Port Numbers
 Usually seen in pairs: source port and destination port.
 The source port is dynamically chosen by the sender.
 The destination port is used to identify an application on the server 
(destination).





TCP AND UDP

Socket Pairs
 The combination of the source IP address and source port number, or the 
destination IP address and destination port number, is known as a socket.

 The socket is used to identify the server and service being requested by 
the client.

 Two sockets combine to form a socket pair: (192.168.1.5:1099, 
192.168.1.7:80).

 Sockets enable multiple processes running on a client and multiple 
connections to a server process to be distinguished from each other.

Port Number Groups
 The IANA has created three port number groups:
 Well-known ports (0 to 1023)
 Registered Ports (1024 to 49151)
 Private and/or Dynamic Ports (49152 to 65535)



TCP COMMUNICATION PROCESS
TCP Server Processes
 Each application process running on the server uses a port number.

 An individual server cannot have two services assigned to the same port number within 
the same transport layer service.

 An active server application assigned to a specific port is considered to be open.

 Any incoming client request addressed to an open port is accepted and processed by the 
server application bound to that port.

 There can be many ports open simultaneously on a server, one for each active server 
application.

TCP Connection Establishment
 A TCP connection is established in three steps:

• The initiating client requests a client-to-server communication session with the 
server.

• The server acknowledges the client-to-server communication session and requests 
a server-to-client communication session.

• The initiating client acknowledges the server-to-client communication session.



TCP COMMUNICATION PROCESS
TCP Session Termination
 The FIN TCP flag is used to terminate a TCP connection.

• When the client has no more data to send in the stream, it sends a 
segment with the FIN flag set.

• The server sends an ACK to acknowledge the receipt of the FIN to 
terminate the session from client to server.

• The server sends a FIN to the client to terminate the server-to-client 
session.

• The client responds with an ACK to acknowledge the FIN from the server.
• When all segments have been acknowledged, the session is closed.

TCP Three-way Handshake Analysis
 The three-way handshake:

• Establishes that the destination device is present on the network.
• Verifies that the destination device has an active service and is accepting 

requests on the destination port number that the initiating client intends to 
use

• Informs the destination device that the source client intends to establish a 
communication session on that port number.



RELIABILITY AND FLOW CONTROL

TCP Reliability – Ordered Delivery
TCP segments use sequence numbers to uniquely identify 
and acknowledge each segment, keep track of segment 
order, and indicate how to reassemble and reorder 
received segments.

An initial sequence number (ISN) is randomly chosen 
during the TCP session setup. The ISN is then incremented 
by the number of transmitted bytes.

The receiving TCP process buffers the segment data until 
all data is received and reassembled. 

Segments received out of order are held for later 
processing.

The data is delivered to the application layer only when 
it has been completely received and reassembled.





RELIABILITY AND FLOW CONTROL

TCP Flow Control – Window Size and 
Acknowledgments
 TCP provides mechanisms for flow control.

 Flow control ensures the TCP endpoints can receive and process data reliably.

 TCP handles flow control by adjusting the rate of data flow between source 
and destination for a given session.

 TCP flow control function relies on a 16-bit TCP header field called the 
Window size. The window size is the number of bytes that the destination 
device of a TCP session can accept and process at one time.

 TCP source and destination agree on the initial window size when the TCP 
session is established

 TCP endpoints can adjust the window size during a session if necessary.





TCP Flow Control – Congestion Avoidance

 Network congestion usually results in discarded packets.
 Undelivered TCP segments trigger re-transmission. TCP segment 
retransmission can make the congestion even worse.

 The source can estimate a certain level of network congestion by 
looking at the rate at which TCP segments are sent but not 
acknowledged.

 The source can reduce the number of bytes it sends before 
receiving an
acknowledgement upon congestion detection.

 The source reduces the number of unacknowledged bytes it sends 
and not
the window size, which is determined by the destination.

 The destination is usually unaware of the network congestion and 
sees no need to suggest a new window size. 





UDP Low Overhead Vs. Reliability
 UDP has much lower overhead than TCP.
 UDP is not connection-oriented and does not offer the 
sophisticated retransmission, sequencing, and flow control 
mechanisms.

 Applications running UDP can still use reliability, but it must be 
implemented in the application layer.

 However, UDP is not inferior.

UDP Datagram Reassembly
 UDP simply reassembles the data in the order in which it was 
received.

 The application must identify the proper sequence, if necessary.

UDP Server Processes and Requests
 UDP-based server applications are also assigned well-known or 
registered port numbers.

 Requests received on a specific port are forwarded to the proper 
application based on port numbers.



UDP Client Processes

UDP client-server communication is also initiated by a 
client application.

The UDP client process dynamically selects a port 
number and uses this as the source port.

The destination port is usually the well-known or 
registered port number assigned to the server process.

The same source-destination pair of ports is used in the 
header of all datagrams used in the transaction.

Data returning to the client from the server uses a 
flipped source and destination port numbers in the 
datagram header.



Applications that Use TCP
 TCP handles all transport layer related tasks.
 This frees the application from having to manage any of these 
tasks.

 Applications can simply send the data stream to the transport 
layer and use the services of TCP.

Applications that Use UDP
 Live video and multimedia applications - Can tolerate some data 
loss, but require little or no delay. Examples include VoIP and live 
streaming video.

 Simple request and reply applications - Applications with simple 
transactions where a host sends a request and may or may not 
receive a reply. Examples include DNS and DHCP.

 Applications that handle reliability themselves – Unidirectional 
communications where flow control, error detection, 
acknowledgements, and error recovery is not required or can be 
handled by the application. 
Examples include SNMP and TFTP.


