
TRANSMISIÓN
CONFIABLE DE DATOS

REDES DE DATOS 



TRANSPORT LAYER PROTOCOLS

TRANSPORTATION OF DATA
Role of the Transport Layer
 Responsible for establishing a temporary communication session between two 

applications and delivering data between them.

 Provides Connection-oriented data stream support, Reliability, Flow control, 
Multiplexing

Transport Layer Responsibilities
 Track individual conversations.

 Segment Data and Reassemble Segments.

 Identify the Applications.

Conversation Multiplexing
 Segments data into small chunks.

 Label data chunks according to the conversation.

Transport Layer Reliability
 Two protocols provided: TCP and UDP.

 TCP supports reliability while UDP doesn’t.



TRANSPORT LAYER PROTOCOLS

TRANSPORTATION OF DATA
TCP
 Supports packet delivery confirmation.
 There are three basic operations that enable reliability with TCP:

• Numbering and tracking data segments transmitted to a specific 
host from a specific application

• Acknowledging received data
• Retransmitting any unacknowledged data after a certain period 

of time

UDP
 UDP provides the basic functions for delivering data segments between 
the
appropriate applications, with very little overhead and data checking.

 Perfect for applications that don’t require reliability.

The Right Transport Layer Protocol for the Right Application
 TCP is better for databases, web browsers, email clients, etc.
 UDP is better for live audio or video streaming, VoIP, etc.



TCP OVERVIEW

TCP Features
 Establishing a session

 Reliable delivery

 Same-Order delivery

 Flow control

TCP Header
 TCP is a stateful protocol.

 TCP adds 20 bytes of overhead 
in the segment header.



UDP OVERVIEW
UDP Features
 Simple and fast.

UDP Header
 UDP is a stateless protocol.

 Reliability must be handled by the application.

 The pieces of communication in UDP are called Datagrams.

 UDP adds only 8 bytes of overhead.



PORT NUMBERS

Multiple Separate Conversations
 The transport layer separate sand manages multiple 
communications with different transport requirements.

 Different applications are sending and receiving data over the 
network simultaneously.

 Unique header values allow TCP and UDP to manage these 
multiple and simultaneous conversations by identifying these 
applications.

 These unique identifiers are the port numbers.

Port Numbers
 Usually seen in pairs: source port and destination port.
 The source port is dynamically chosen by the sender.
 The destination port is used to identify an application on the server 
(destination).





TCP AND UDP

Socket Pairs
 The combination of the source IP address and source port number, or the 
destination IP address and destination port number, is known as a socket.

 The socket is used to identify the server and service being requested by 
the client.

 Two sockets combine to form a socket pair: (192.168.1.5:1099, 
192.168.1.7:80).

 Sockets enable multiple processes running on a client and multiple 
connections to a server process to be distinguished from each other.

Port Number Groups
 The IANA has created three port number groups:
 Well-known ports (0 to 1023)
 Registered Ports (1024 to 49151)
 Private and/or Dynamic Ports (49152 to 65535)



TCP COMMUNICATION PROCESS
TCP Server Processes
 Each application process running on the server uses a port number.

 An individual server cannot have two services assigned to the same port number within 
the same transport layer service.

 An active server application assigned to a specific port is considered to be open.

 Any incoming client request addressed to an open port is accepted and processed by the 
server application bound to that port.

 There can be many ports open simultaneously on a server, one for each active server 
application.

TCP Connection Establishment
 A TCP connection is established in three steps:

• The initiating client requests a client-to-server communication session with the 
server.

• The server acknowledges the client-to-server communication session and requests 
a server-to-client communication session.

• The initiating client acknowledges the server-to-client communication session.



TCP COMMUNICATION PROCESS
TCP Session Termination
 The FIN TCP flag is used to terminate a TCP connection.

• When the client has no more data to send in the stream, it sends a 
segment with the FIN flag set.

• The server sends an ACK to acknowledge the receipt of the FIN to 
terminate the session from client to server.

• The server sends a FIN to the client to terminate the server-to-client 
session.

• The client responds with an ACK to acknowledge the FIN from the server.
• When all segments have been acknowledged, the session is closed.

TCP Three-way Handshake Analysis
 The three-way handshake:

• Establishes that the destination device is present on the network.
• Verifies that the destination device has an active service and is accepting 

requests on the destination port number that the initiating client intends to 
use

• Informs the destination device that the source client intends to establish a 
communication session on that port number.



RELIABILITY AND FLOW CONTROL

TCP Reliability – Ordered Delivery
TCP segments use sequence numbers to uniquely identify 
and acknowledge each segment, keep track of segment 
order, and indicate how to reassemble and reorder 
received segments.

An initial sequence number (ISN) is randomly chosen 
during the TCP session setup. The ISN is then incremented 
by the number of transmitted bytes.

The receiving TCP process buffers the segment data until 
all data is received and reassembled. 

Segments received out of order are held for later 
processing.

The data is delivered to the application layer only when 
it has been completely received and reassembled.





RELIABILITY AND FLOW CONTROL

TCP Flow Control – Window Size and 
Acknowledgments
 TCP provides mechanisms for flow control.

 Flow control ensures the TCP endpoints can receive and process data reliably.

 TCP handles flow control by adjusting the rate of data flow between source 
and destination for a given session.

 TCP flow control function relies on a 16-bit TCP header field called the 
Window size. The window size is the number of bytes that the destination 
device of a TCP session can accept and process at one time.

 TCP source and destination agree on the initial window size when the TCP 
session is established

 TCP endpoints can adjust the window size during a session if necessary.





TCP Flow Control – Congestion Avoidance

 Network congestion usually results in discarded packets.
 Undelivered TCP segments trigger re-transmission. TCP segment 
retransmission can make the congestion even worse.

 The source can estimate a certain level of network congestion by 
looking at the rate at which TCP segments are sent but not 
acknowledged.

 The source can reduce the number of bytes it sends before 
receiving an
acknowledgement upon congestion detection.

 The source reduces the number of unacknowledged bytes it sends 
and not
the window size, which is determined by the destination.

 The destination is usually unaware of the network congestion and 
sees no need to suggest a new window size. 





UDP Low Overhead Vs. Reliability
 UDP has much lower overhead than TCP.
 UDP is not connection-oriented and does not offer the 
sophisticated retransmission, sequencing, and flow control 
mechanisms.

 Applications running UDP can still use reliability, but it must be 
implemented in the application layer.

 However, UDP is not inferior.

UDP Datagram Reassembly
 UDP simply reassembles the data in the order in which it was 
received.

 The application must identify the proper sequence, if necessary.

UDP Server Processes and Requests
 UDP-based server applications are also assigned well-known or 
registered port numbers.

 Requests received on a specific port are forwarded to the proper 
application based on port numbers.



UDP Client Processes

UDP client-server communication is also initiated by a 
client application.

The UDP client process dynamically selects a port 
number and uses this as the source port.

The destination port is usually the well-known or 
registered port number assigned to the server process.

The same source-destination pair of ports is used in the 
header of all datagrams used in the transaction.

Data returning to the client from the server uses a 
flipped source and destination port numbers in the 
datagram header.



Applications that Use TCP
 TCP handles all transport layer related tasks.
 This frees the application from having to manage any of these 
tasks.

 Applications can simply send the data stream to the transport 
layer and use the services of TCP.

Applications that Use UDP
 Live video and multimedia applications - Can tolerate some data 
loss, but require little or no delay. Examples include VoIP and live 
streaming video.

 Simple request and reply applications - Applications with simple 
transactions where a host sends a request and may or may not 
receive a reply. Examples include DNS and DHCP.

 Applications that handle reliability themselves – Unidirectional 
communications where flow control, error detection, 
acknowledgements, and error recovery is not required or can be 
handled by the application. 
Examples include SNMP and TFTP.


